
DS4 - 22/11/25

DS physique

Conseils pour aborder le devoir

- La rédaction (clarté, précision,...) et la présentation doivent être particulièrement soignées
- N’oubliez pas d’encadrer les expressions littérales et de souligner les applications numé-

riques
- Si vous n’arrivez pas à démontrer un résultat dont vous avez besoin pour les questions

suivantes, vous pouvez l’admettre, mais il faut bien le préciser sur votre copie

LES CALCULATRICES NE SONT PAS AUTORISÉES
Durée de l’épreuve : 4h
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I - Mesures interférométriques

A - Dispositif interférentiel à deux trous d’Young
Le dispositif est celui représenté figure 1.1. Le faisceau arrive sur deux trous d’Young percés
dans le plan π0 (fig 1.1.a). Ces trous d’Young, éclairés par un faisceau incident parallèle se
propageant dans la direction OX, se comportent comme deux sources lumineuses S1, S2 ponc-
tuelles, monochromatiques, synchrones, cohérentes, distantes de b (fig 1.1.b) ; ces deux sources
émettent une même lumière de longueur d’onde dans le vide λ0. Elles sont symétriques par
rapport à l’axe OX.
Ces ondes se propagent dans l’air d’indice optique absolu Na.
On utilise le repère (OXY Z), l’origine O étant au milieu de S1S2 (fig 1.1.a).
On observe des interférences dans la zone commune d’éclairement du plan πE.
Cette zone est sensiblement un disque de rayon R = 1 cm (fig 1.1.a et 1.1.c).
On s’intéresse aux phénomènes en un point M(x = D, y, z) du plan πE.

(a) vue globale

(b) vue en coupe (c) vue du plan ΠE

Figure 1.1 – Dispositif des trous d’Young

1. Préciser la signification des termes synchrone et cohérent.
2. Etablir la différence de marche δ en précisant les approximations réalisées.
3. Ecrire la forme des amplitudes vibratoires émises par S1 et S2 reçues au point M . Montrer

que l’intensité lumineuse au point M est de la forme I = K(1 + cos(B)) et expliciter B
en fonction de δ et λ0.

4. Reproduire et compléter la fig 1.1.c en dessinant l’allure géométrique des franges d’inten-
sité maximale. Comment appelle-t-on ces franges ?

5. Evaluer le nombre de franges d’intensité maximale observable avec : λ = 500 nm, b = 2 mm,
Na = 1 ; D = 2 m.
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B - Montage expérimental
On reprend le montage précédent, mais on observe, à présent, les phénomènes sur un écran
π situé dans le plan focal image d’une lentille convergente (L2). Cette lentille, fonctionnant
dans les conditions de Gauss, sera considérée comme parfaitement stigmatique pour ses points
conjugués. Les trous d’Young sont symétriques par rapport à l’axe optique OX de la lentille
L2.

Figure 1.2 – Montage pour observation à l’infini

On regarde ce qui se passe en un point M d’ordonnée Y du plan Π. On suppose que S1 et S2
sont en phase.

6. Montrer que la différence de chemin optique δ′ entre l’onde arrivant en M issue de S2 et
celle issue de S1 est δ′ = Na

bY

f ′ . On justifiera de manière précise, à l’aide de schémas, les
raisonnements utilisés.

C - Mesure d’indice de réfraction
Le dispositif de mesure comprend une source de lumière monochromatique S, ponctuelle, de
longueur d’onde dans le vide λ0, placée au foyer objet d’une lentille convergente L1 (fig 1.3).
Entre les deux lentilles L1 et L2 (considérées comme minces, identiques, de distance focale f ′),
on dispose deux cuves C1 et C2 identiques de longueur L.
Deux fentes d’Young séparées de la distance b sont placées avant L2 symétriquement par rapport
à l’axe SO.
On observe sur un écran π dans le plan focal image de L2.
Les points S et O sont sur l’axe optique commun de L1 et L2. L’ensemble se trouve dans l’air.
La cuve C2 contient de l’air d’indice optique absolu Na ; la cuve C1 contient un gaz d’indice
optique absolu N1.
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Figure 1.3 – Dispositif de mesure

7. Déterminer la différence de chemin optique δ′′ entre une onde issue de S arrivant en M
en étant passée par C2 et celle qui est passée par C1.
On donnera le résultat en fonction de Na, N1, b, f ′, L et l’ordonnée Y de M sur Π.

8. Tous les résultats trouvés en Q3. sont valides avec cette expression de δ′′ ; déterminer
l’interfrange i′.

Un capteur placé en O (Y = 0) est couplé à un compteur qui s’incrémente de 1 unité à chaque
détection d’une frange brillante. On part d’un état initial où les cuves C1 et C2 sont remplies
d’air.

9. Quel est l’ordre d’interférence po initial en O ?
10. On remplace progressivement l’air de la cuve C1 par du gaz d’indice N1 (N1 > Na).

Lorsque C1 est uniquement rempli de ce gaz, le détecteur s’est incrémenté de k unités.
Préciser le nouvel ordre en Y = 0 et le sens dans lequel le système de frange a défilé (on
attend ici une réponse argumentée).

11. Déterminer l’expression littérale de N1 en fonction de Na, k, L et λ0

D - Suivi de déplacement
On utilise un dispositif de Michelson à deux miroirs parfaitement orthogonaux, éclairés par un
fin pinceau lumineux monochromatique émis par un LASER On se ramène au modèle dans
lequel la séparatrice, inclinée à 45◦, est idéale (elle est semi réfléchissante, infiniment mince et
n’introduit aucun déphasage) (fig1.4).
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M2 : miroir fixe (OO2 = d)
M1 : miroir lié à la cible OO1 = d + x(t) avec x(0) = 0

Figure 1.4 – Schématisation du Michelson

12. Déterminer l’intensité lumineuse I arrivant sur le détecteur D en fonction de x(t).
13. Le détecteur D élimine la composante constante du signal et donne une tension Ud pro-

portionnelle à la composante variable de l’intensité I. Montrer que Ud = U0 cos(Φ) et
expliciter Φ en fonction de x et des données.

Le détecteur D est couplé à un compteur C incrémenteur de franges (cf partie C). Le compteur
est à 0 lorsque t = 0.
14. On envisage un déplacement de la cible toujours dans le même sens sur une longueur

L = 200λ ; quelle sera l’indication du compteur ?
15. On déplace à présent M1 de L1 = 100λ dans un sens puis de L′

1 = 100λ en sens inverse.
Donner l’abscisse finale de la cible et l’indication du compteur dans ce cas.

16. A quelle grandeur accède-t-on finalement par ce dispositif interférentiel ?
On interpose sur le bras OO2, une lame d’indice N et d’épaisseur e, dans le but que le détecteur
D délivre la tension Ud = U0 sin(Φ), Φ ayant la même expression que celle trouvée en Q13.
17. Donner l’expression littérale des épaisseurs possibles de la lame pour qu’il en soit ainsi.

E - Largeur spectrale d’une raie d’émission
On cherche dans cette partie à faire une mesure de la largeur spectrale (donc de la durée
moyenne du train d’onde τ0) de la raie λ0 ≃ 500 nm du mercure (Hg).
La transition radiative d’un atome conduit à l’émission d’un train d’onde de durée finie τ0.
La raie spectrale correspondante n’est donc pas strictement monochromatique. On a alors
une raie spectrale centrée sur ν0 = ω0

2π
, de largeur caractéristique à mi-hauteur ∆ν = 1

ν0
.

L’intensité émise au niveau de la source appartenant au domaine spectral [ν; ν +dν] s’écrit alors
dI0 = Iν(ν)dν où Iν(ν) est l’intensité spectrale, fonction qui caractérise le spectre fréquentiel
d’émission.
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On modélise l’intensité spectrale Iν(ν) de la raie verte du mercure par un profil rectangulaire
comme sur la figure 1.5.

Figure 1.5 – Profils de raie

Dans notre modèle de raie rectangulaire, l’intensité totale de la source est donc donnée par :

I0 =
∫ ν0+∆ν

ν0−∆ν
Iν(ν)dν = Iν,m∆ν

On éclaire l’interféromètre de Michelson de la figure 1.4 avec une lampe à vapeur de mercure
dont on a isolé la raie verte de fréquence centrale ν0 = c

λ0
avec λ0 = 500 nm.

On observe les interférences au moyen du détecteur D.
18. Expliquer pourquoi on pourrait observer des brouillages. Exprimer la différence ∆p d’ordre

d’interférence en M entre une radiation de fréquence ν0 et une autre de fréquence ν0+ ∆ν

2 .
On suppose qu’on a réglé l’interféromètre au contact optique et qu’on « chariote » (déplace
en translation) le miroir M1.

19. Par un raisonnement semi-quantitatif, exprimer la valeur xlim de la distance x corres-
pondant à la frontière entre une vision en D d’anneaux bien contrastés et une perte de
contraste au centre de ceux-ci.

20. Déterminer l’intensité dI(D) donnée sur D par une petite bande du spectre de largeur
spectrale dν en fonction, entre autre, de τ = δ

c
. À quoi correspond physiquement τ ?

Exprimer p(ν), l’ordre d’interférence en D pour une radiation de fréquence ν en fonction
de τ .

21. Calculer alors l’intensité totale I donnée en D par la totalité du spectre de la source de
lumière (en fonction de τ) ; mettre le résultat sous la forme :

I = I0 (1 + Γ(τ) cos(2πν0τ))

où Γ(τ) est une fonction de τ à « variation lente » appelée « facteur de visibilité ».
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22. Tracer le graphe de l’intensité I en fonction de τ . Quelle est la valeur de τ correspon-
dant à la première annulation de contraste ? Comparer avec la durée du train d’onde et
commenter.

Un moteur permet de translater le miroir mobile M1 à la vitesse constante V0 à partir de la
position du contact optique.
23. On arrête la translation de M1 à la valeur de 15,00 mm (à partir du contact optique)

lorsque la première annulation de contraste est observée à l’écran. Déterminer la valeur
expérimentale ∆νexp de ∆ν. Conclure sur la durée du train d’onde.

II - Conductimètre embarqué
On s’intéresse dans cette partie à un conductimètre embarqué dans un flotteur, dont l’objectif
est de mesurer la conductivité de l’eau de mer.

Ce capteur est composé de deux bobines toroïdales placées côte à côte. La première bobine, ap-
pelée bobine d’excitation, est alimentée par une tension sinusoïdale u1(t). Sa résistance interne
est négligeable et son inductance propre est L1. Elle se comporte comme le primaire d’un trans-
formateur dont le circuit secondaire est l’eau qui baigne l’ensemble et que l’on peut assimiler
à une boucle conductrice de résistance Re, proportionnelle à l’inverse de la conductivité σ de
l’eau. Cette boucle se comporte à son tour comme le circuit primaire d’un transformateur dont
le secondaire est la seconde bobine, appelée bobine de mesure, de résistance interne négligeable
et d’inductance propre L4. D’un point de vue électrique, l’ensemble est donc modélisable par le
circuit représenté en figure 2.1, où figurent également le circuit d’alimentation et celui, modélisé
par une résistance Rm, permettant la mesure de la tension u4(t) en sortie.

Figure 2.1 – Schéma d’un conductimètre inductif
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Figure 2.2 – Schéma électrique équivalent du conductimètre

On admettra que deux bobines a et b en mutuelle induction en influence totale (ce qui sera le
cas ici) imposent en convention récepteur

ua

Na

= ub

Nb

avec Na et Nb le nombre des spires des bobines a et b.

Par ailleurs, pour deux bobines en influence totale, on a également M =
√

LaLb = Nb

Na

La

A - Etude du circuit d’alimentation
On considère dans un premier temps le circuit d’alimentation encadré en tirets sur la partie
gauche du circuit de la figure 2.2. L’ALI est supposé idéal et en régime linéaire. Ses tensions de
saturation sont +Vsat et −Vsat. On suppose également que ses limites de saturation en courant
ne sont jamais atteintes.
24. Rappeler en quoi consiste le modèle de l’ALI idéal.
25. En appliquant une loi des nœuds au point A, montrer que la tension u0 repérée sur le

schéma de la figure 2.2 vérifie l’équation différentielle

du1

dt
= 1

ω0

d2u0

dt2 + 3du0

dt
+ ω0u0

où l’on précisera l’expression de ω0.
26. Démontrer par ailleurs que u1 = Gu0 où l’on exprimera G en fonction de Ra et Rb.
27. En déduire une condition sur G, puis sur Ra et Rb pour que le système d’alimentation soit

oscillant de façon sinusoïdale. On exprimera la fréquence f0 de ces oscillations en fonction
de R et C.

B - Etude de la partie terminale du circuit de mesure
On considère ici la partie terminale du circuit représentée en figure 2.3.
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Figure 2.3 – Schéma électrique de la partie terminale du circuit

28. Écrire, en notation complexe, l’expression de u3 en fonction de L3, M , ω0, ie et i4.
29. En déduire la relation ie = Y u3 en donnant l’expression de Y en fonction de L3, N4, Rm,

M et ω0.
30. En utilisant les résultats admis, montrer qu’on peut réécrire

Y = 1
jL3ω0

+ N2
4

Rm

C - Etude du circuit complet de mesure
D’après la relation ie = Y .u3 établie précédemment, le circuit de mesure complet est équivalent
au schéma représenté figure 2.4 dans lequel Z = 1/Y .

Figure 2.4 – Schéma électrique équivalent du circuit de mesure complet

31. Déterminer la relation entre u2, u3, Re et Y .
32. Montrer à partir des résultats précédents que :

u1 = −N1

N4
(1 + ReY )Rmi4

33. Dans la limite où Rm tend vers 0, montrer que l’intensité i4(t) tend vers

i4(t) = − 1
N1N4Re

u1(t)

D - Etude du convertisseur courant-tension
Pour mesurer le courant i4,lim de façon simple, on propose de remplacer la résistance Rm par
le circuit schématisé en figure 2.5, dans lequel l’ALI est supposé idéal et fonctionne en régime
linéaire.
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Figure 2.5 – Schéma électrique d’un convertisseur courant-tension

34. Montrer que le montage permet une conversion du courant i4,lim en une tension vm.
35. Commenter l’intérêt d’utiliser ce montage, en calculant notamment sa résistance d’entrée.
36. Lorsqu’il est intégré dans le circuit de la figure 2.2, que vaut le courant noté im sur le

schéma de la figure 2.5 ? D’où vient-il ?

III - Mélange eau/glace
Dans une enceinte adiabatique déformable, on place une masse m1 = 500 g d’eau liquide à la
température T1 = 27, 0◦C et une masse m2 = 150 g de glace à la température T2 = −5, 00◦

C. La capacité thermique massique de l’eau est cl = 4 kJ.K−1.kg−1 et celle de la glace cs = 2
kJ.K−1.kg−1. L’enthalpie massique de fusion de l’eau est ℓfus = 300 kJ.kg−1 et la température
de fusion Tfus = 273 K= 0, 00◦C.
37. Quels sont les états finaux possibles ?
38. On suppose dans un premier temps que toute la glace a fondu. Exprimer la température

finale TF . L’application numérique donne TF = 260 K. Conclure.
39. Exprimer le titre massique de glace dans le cas où il reste de l’eau sous forme de glace.

L’application numérique donne 0,6. Conclure.
40. Calculer la variation d’entropie ∆S du système global.

IV - Evaporation de l’eau
On introduit de l’eau liquide à la température Ti = 300 K dans une bouteille de volume V0 = 1 L.
L’eau n’occupe qu’un quart du volume, le reste étant rempli d’air (inerte) parfaitement sec à
la pression P0 = 1 bar et à la température Ti . On suppose que les parois de la bouteille sont
isolantes et il n’y aura pas de transfert thermique avec l’extérieur.

On donne c = 4.103 J.K-1.kg-1 la capacité thermique massique de l’eau liquide, Me = 18 g.mol-1
la masse molaire de l’eau, Ma = 29 g.mol-1 la masse molaire de l’air, ρ = 1, 0.103 kg.m-3,
Psat = 7, 0.103 Pa la pression de vapeur saturante de l’eau et ∆vaph = 3, 0.106 J.kg-1 l’enthalpie
de vaporisation de l’eau, toutes deux supposées constantes dans l’intervalle de température
étudié.
On assimilera l’air et la vapeur d’eau à des gaz parfaits.

Une fois la bouteille fermée, une partie de l’eau liquide va s’évaporer ce qui va résulter en une
légère diminution de la température de l’eau liquide restante. On note Tf la température finale
du système et on supposera que |Tf − Ti| ≪ Ti, c’est-à-dire Tf ≃ Ti.
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41. Représenter le diagramme (P, T ) pour l’eau. On fera figurer les différents domaines et les
points pertinens (point triple et point critique).

42. Déterminer la masse d’air ma et la masse d’eau liquide m0 initialement contenues dans
la bouteille. (expression littérale et ordre de grandeur de la valeur)

43. Déterminer l’expression de la masse vaporisée mv en fonction de V0, m, R, Tf , Psat et
Me, puis calculer sa valeur numérique en prenant Tf = Ti. Quelle fraction de l’eau liquide
initiale s’est vaporisée ? Quelle approximation peut-on faire sur le volume d’eau restant
liquide ?

On supposera dans la suite que les capacités thermiques de l’eau vaporisée et de l’air sont
négligeables devant la capacité thermique massique de l’eau liquide restante. On supposera
également que la transformation a lieu à pression constante de l’air P0.
44. A l’aide d’un bilan enthalpique, déterminer l’expression de la variation de température

∆T de l’eau liquide en fonction de Psat, Me, ℓvap, R, Ti, c et ρ. Effectuer l’application
numérique et commenter la pertinence de l’approximation Ti ≃ Tf .

45. Rappeler le lien entre l’entropie massique de vaporisation ∆vaps, l’enthalpie massique de
vaporisation ∆vaph et la température T à laquelle se fait la transition de phase.
Déterminer l’expression de la variation ∆S de l’entropie du système et en déduire l’ex-
pression de l’entropie créée Scréée.

Pour obtenir un effet de refroidissement accru, on branche une pompe sur le bouchon de la
bouteille. Cette pompe aspire lentement la vapeur d’eau formée tout en conservant l’air sec.
L’eau liquide se vaporise à nouveau et ainsi de suite, créant un effet cumulé de refroidissement.
On note m0 la masse d’eau liquide initiale et la température initiale vaut toujours Ti = 300 K.
On raisonne sur un système infinitésimale d’eau dmv qui se vaporise à la température T ,
provoquant une variation dT de la masse ml(T ) d’eau liquide restante.
46. Quelle relation simple relie dmv et dmL (la variation de la masse d’eau liquide restante) ?

A l’aide d’un bilan enthalpique, établir l’équation différentielle du premier ordre vérifiée
par mL(T ). On introduira une température caractéristique Tc s’exprimant en fonction de
∆vaph et c dont on calculera la valeur numérique. En déduire la solution mL(T ) à l’aide
de la condition initiale.

47. A partir de quelle masse évaporée l’eau commence-t-elle à se solidifier ? Effecture l’appli-
cation numérique.
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